中国数学网


小学数学 初中数学 高中数学 数学新闻


试论灵活设问与创造性思维的培养


showElementsTop(0);

摘要:通过对新课程标准下设问和创造性思维的理解,阐述了二者之间的辨证关系以及在数学教学中如何将二者有机结合起来,并结合实例进行了深入说明。

关键词:设问,创造性思维,发散思维

最新颁布的数学新课程标准要求教师要“通过研究性、探究性的学习,培养学生具有创新能力、实践能力和终生学习的能力”。其中,创新能力的培养应是培养目标中的核心。而创新能力的培养中,创造性思维的培养又是核心中的核心。

所谓创造性思维,是指有创建的思维,即通过思维,不但能揭示客观事物的本质及其内在联系,而且在此基础上能产生新颖的、前所未有的思维成果。它是智力水平高度发展的产物,是后天培养与训练的结果。创造性思维以新颖独特的方法解决问题,具有发散性和收敛性、灵活性和多变性、独特性和新颖性的特点。

在研究性学习过程中,鼓励教师在教学中“要提倡灵活多样的教学方式,尤其是采用启发式和讨论式的设问,充分发展学生的个性,发展其思维能力,激发想象力和创造潜能”,“避免烦琐的分析和琐碎机械的练习”。可见,灵活巧妙的设问,不仅具有活跃课堂气氛的功能,更具有培养学生创造性思维的作用。

通过以上对设问和创造性思维的理解和界定,可以看出,在数学教学中,教师通过课堂的灵活设问,对培养学生的发散思维和集中思维,启迪直觉思维,培养创造机智等具有重要的意义。

1 、 创设良好的课堂氛围和设问情境,为灵活设问的效能最大化创造前提

我国的传统教育比较注重学生求同思维的养成,往往容易忽视对学生求异品质的塑造。因此,我们在课堂教学中,应充分利用一切可供想象的空间,充分发挥学生的想象力,培养学生的创造力。

具体而言,我们要提倡建立“畅所欲言,各抒己见”的课堂氛围,为学生提供独立活动、自我表现的机会和条件;应鼓励学生对老师的提问产生质疑,能够提出自己不同的观点和看法;应鼓励学生由此及彼,从一个问题衍生开来,提出崭新的、有创造性的问题。只有这样,教师的设问才会最大可能地激发学生的创造性思维。

要鼓励学生拥有坚持己见的自信和勇气,引导学生为证明自己的观点找证据,求事实;但同时应引导学生既要敢于坚持己见,又要善于接纳别人正确的观点,从而在对某个问题的讨论中获得最大收益。

要创设合适的问题情境,激发学生探讨数学问题的兴趣。学习兴趣和求知欲是学生能否积极思维的动力。在数学问题情境中,新知识的需要与学生原有的数学水平之间存在着认识冲突,而这种冲突正是诱发学生数学思维的积极性和创造性所必需的。

例如: 对于分式的化简,就可设计如下的诱发过程以引导学生:

大多数学生对分式的加减运算都懂得先通分后加减,但这一方法对本题不适用,教师可问学生能否用其它方法对它进行化简。譬如,分别观察分式的分子、分母,寻找形式上的特点。通过教师这一引导性的提问激发起了学生的兴趣,学生的思维便活跃起来,积极对该式进行观察、分析。原来 :可化为可化为,从而达到了化简的目的。

2. 多角度、多层次、多方位设问,培养学生发散思维

发散思维是创造性思维的主导成分,又是创造性思维的核心,它着眼于探索未知的事物,发现事物间的新关系,寻找多方面解决问题的方法。因此,将一个问题从不同角度、不同层次进行设问,也可训练学生的发散思维,进而培养学生的创造性思维。具体而言,思考问题时,根据同一来源材料,以比较丰富的知识为依托,沿着不同的方向去思考,以探求不同方向的解答,即通常所说的“一题多解”、“一题多变”。

又例:解方程

设问1:能否用换元法求解?

,则,解得,然后求解

设问2:能否根据方程特点,用一元二次方程求解?

可利用一元二次方程中“根与系数的关系”构造出一个一元二次方程,解得,然后求解

设问3:能否构造倒数方程求解?

将原方程变为:

 ,然后直接求解。

3 .启发引导,保持创造性思维的持续性

在合适的问题情境中,学生思维的积极性被充分地调动起来,但应该怎样保持这种积极性,使其持续下去而不中断呢?

3.1 要给学生思考的时间

数学学习是通过思考进行的,没有学生的思考就没有真正的数学学习,思考问题是需要一定的时间的。值得研究的是,教师提出问题后,应该给学生多少思考时间。实验表明,思考时间若非常短,学生的回答通常也很简短,但若把思考时间延长一些,学生就会更加全面、较为完整地回答问题,这样,问题回答的准确率就会提高。当然,思考时间的长短,是与问题的难易程度和学生的实际水平密切相关的。目前,在课堂学习中,教师往往是提出问题后,几乎不给出思考时间,就要求学生立刻作答,而一旦学生不能立刻说出答案,教师便不断重复其问题,催促答案或者干脆另外提出一些问题来弥补这个"冷场"。其实,这恰恰是在干扰学生表面看似平静,实则活跃的思维过程。

3.2 教师启发要与学生的思维同步

教师提出问题后,一般应让学生先作一番思考,必要时教师可作适当的启发引导。教师的启发要遵循学生思维的规律,因势利导,循序渐进,不能强制学生按照教师提出的方法和途径去思考问题,喧宾夺主。 例如:初中学生在学习“三角形相似的判定”这一内容时,教师可选用如下的例题。

例:已知:如图1,△ABC 中,BE和CF是中线, 它们相交于点G,

求证:FG·CG = EG·BG

图 1

如果有的教师没有认真揣摩学生的思路,径直提出连结EF(图1),强行让学生证明△EFG∽△BCG。那么就可能脱离学生的实际,没能与学生的思维同步。有经验的教师往往“既备教材,又备学生”,在备课时认真揣摩学生的心理,估计课堂上可能发生的各种情况。对于这道例题,学生可能会去证明△BGF和△CGE相似,教师应让学生多讨论,去发现这两个三角形不一定相似,即使相似,也不符合本题结论的要求。如此一来,就为学生滤去了疑惑。此时,学生不须再启发,也会利用“点E、F分别为边AC、AB的中点”这一条件,进而联想到连结EF。

3.3 要不断向学生提出新的教学问题

问题不仅是教学的心脏、教学思维的动力,更是思维的方向。数学思维的过程就是不断地提出问题和解决问题的过程。因此,在数学课堂教学中,教师要及时地向学生提出新的数学问题,为更深入的数学思维活动提供动力和方向,使数学思维活动持续不断地向前发展。提出适当的数学问题必须符合下列条件:

3.3.1 问题要有方向性

这是指提问题要有明确的目的,要使学生的思维趋向于教学目标,否则,反倒会对学生产生误导。

3.3.2 问题的难度要适中

这是指问题不宜太难或太易,难易之间要有一定的梯度。教师提出的问题太难,学生“丈二金刚摸不到头脑”,则失去对问题进行分析的兴趣,更谈不上解决问题。相反,如果问题太简单,学生不费吹灰之力就得出答案,则其求知欲将降低,就会分散注意力,影响学习效果。所以,教师应针对不同层次学生的情况,分层次设问,分层次教学。

3.3.3 问题要有启发性

有的教师往往把启发式误认为提问式,认为问题提得越多越好。其实,问题并不在多,而在于是否具有启发性、是否是关键性的问题、是否能触及问题的本质,引导学生深入思考。

如上图:用一块打破成三块的三角形玻璃引入全等三角形的判定时,教师问:“若带碎片1去,带去了三角形的几个元素?若带碎片2去,带去了三角形的几个元素?若带碎片3去,带去了三角形的几个元素?”这就是个极为关键、富有启发性的问题,它引起了学生浓厚的兴趣,带动学生深入思考,并为学生学习应用“角边角公理”奠定了基础。

4.结论

总之,在课堂教学中,灵活巧妙的设问,对学生创造性思维的培养具有积极的意义。教师在教学过程中,不妨多采用,以达到更好的教学效果。

[参考书目]

[1] 中华人民共和国教育部 . 数学课程标准 . 北京:北京师范大学出版社 . 2002

[2] 教育部基础教育司 . 数学课程标准解读 . 北京:北京师范大学出版社 .2002

[3] 刘良慧,张先华 . 教育观念的革命 . 重庆 : 重庆大学出版社 . 2000


相关内容:

点评湖北高考试卷数学(理):试题灵活内容全
试论中学数学教学中的情感因素
试论信息技术与数学课程的整合策略
试论数学教学经验的提炼
试论学科教学中学生素质的培养
数学教学中学生思维灵活性培养的实践与体会
让快乐充满数学课堂——灵活运用课堂评价浅